Property	Time Domain	Frequency Domain
Linearity	$a_1 x_1(n) + a_2 x_2(n)$	$a_1 X_1(\Omega) + a_2 X_2(\Omega)$
Trans lation	x(n-n(0))	$e^{-j\Omega n_0}X(\Omega($
Modulation	$e^{i\Omega_0 n} x(n)$	$X(\Omega - \Omega(0$
Time Reversal	x(-n(Χ(Ω(
Conjugation	x*(n(X*(Ω(
Downsampling	x(Mn($\sum_{k=0} \frac{1}{k} \frac{M-1}{k} \chi \frac{\Omega-2\pi k}{M}$
Upsampling	$\uparrow) M) x(n)$	X = 0 $MX = 0$ M
Convolution	X1 *X2(<i>1</i>)	$X_1(\Omega)X_2(\Omega)$
Multiplication	$x_1(n)x_2(n($	$\frac{1}{2\pi} \left\{ \frac{1}{2\pi} X_1(\theta) X_2(\Omega - \theta) d\theta \right\}$
FreqDomain Diff.	nx(n($j \frac{d}{d\Omega} X(\Omega($
Accumulation	$\sum_{k=-\infty}^{n} x(k)$	$\frac{\partial^{\Omega}}{\partial \Omega}}{\partial \theta^{\Omega}-1} X(\Omega) + \pi X(\sum_{m=1}^{\infty} \delta(\Omega - 2\pi k))$
Property		
Periodi	city $X(\Omega)$	$= X(\Omega + 2\pi)$
Parseva	al's Relation $\sum_{m=1}^{\infty}$	$ x(n) = \frac{2}{2\pi} \frac{1}{2\pi} X(\Omega) ^2 d\Omega$

▲□▶▲□▶▲目▶▲目▶ 目 めへぐ

Pair	<i>x</i> (<i>n</i> (<i>X</i> (Ω(
1	δ(<i>n</i> (1
2	1	$2\pi \sum_{k=1}^{\infty} \delta(\Omega - 2\pi k)$
3	<i>u</i> (<i>n</i> ($\frac{\partial^{\Omega}}{\partial^{\Omega}-1} \simeq \sum + m \delta(\Omega - 2\pi k)$
4	<i>aⁿu(n</i>), <i>a</i> < 1	$\frac{\theta^{\Omega}}{\theta^{\Omega}-a}$
5	$-a^{n}u(-n-1), a > 1$	$\frac{\theta^{\Omega}}{\theta^{\Omega}-a}$
6	<i>aⁿ, a</i> < 1	$\frac{-1a^2}{2-1a\cos\Omega+a^2}$
7	$\cos\Omega_0 n$	$\pi^{\infty} \Sigma_{\infty -=}] \delta(\Omega - \Omega_0 - 2\pi k) + \delta(\Omega + \Omega_0 - 2\pi k [($
8	$\sin \Omega_0 n$	$j \pi \sum_{m=1}^{\infty} \left[\delta(\Omega + \Omega_0 - 2\pi k) - \delta(\Omega - \Omega_0 - 2\pi k) \right]$
9	$)\cos\Omega_0 n$ $u(n($	$\frac{\theta^{2\Omega} - e^{\Omega} \cos \Omega_0}{\theta^{2\Omega} - 2e^{\Omega} \cos \Omega_0 + 1} + \frac{\pi}{2} \sum_{k \infty} =]\delta(\Omega - 2\pi k - \Omega_0) + \delta(\Omega - 2\pi k + \Omega[(0)])$
10	$\sin \Omega_0 n u(n)$	$\frac{\partial^{\Omega} \sin \Omega_{0}}{\partial^{2\Omega} - 2\partial^{\Omega} \cos \Omega_{0} + 1} + \frac{\pi^{\infty}}{2j} \sum_{k^{\infty} - =} \left[\delta(\Omega - 2\pi k - \Omega_{0}) - \delta(\Omega - 2\pi k + \Omega_{0}) \right]$
11	$\frac{B}{\pi}$ sinc Bn , $0 < B < \pi$	$\infty \sum_{\infty} -= \operatorname{rect} \frac{\Omega - 2\pi k}{2B}$
12	$x(n = \begin{pmatrix} 1 & \text{if } n \le a \\ 0 & \text{otherwise} \end{pmatrix}$	$\frac{\sin(\Omega[a+\frac{4}{2}]^{1}}{\sin(\Omega/\sqrt{2})}$

Version: 2016-01-25

▲□▶▲□▶▲目▶▲目▶ 目 めへぐ

• Recall the definition of the Fourier transform X of the sequence x.

$$X(\Omega = (\sum_{n = -\infty}^{\infty} x(n) e^{-j\Omega n})$$

• For all integer k, we have that

$$X(\Omega + 2\pi k = (\sum_{n = \infty}^{\infty} x(n) e^{-j(\Omega + 2\pi k)n})$$
$$= \sum_{n = \infty}^{\infty} x(n) e^{-j(\Omega n + 2\pi k n)}$$
$$= \sum_{n = \infty}^{\infty} x(n) e^{-j\Omega n}$$
$$= X(\Omega.($$

• Thus, the Fourier transform X of the sequence X is always 2π -*periodic*.

æ.

SQR

• If $X_1(\Omega) \xleftarrow{\text{DTFT}} X_1(\Omega)$ and $X_2(\Omega) \xleftarrow{\text{DTFT}} X_2(\Omega)$, then

 $a_1 x_1(n) + a_2 x_2(n) \xleftarrow{\text{DTFT}} a_1 X_1(\Omega) + a_2 X_2(\Omega)$

where a_1 and a_2 are arbitrary complex constants.

• This is known as the linearity property of the Fourier transform.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

• If $X(\Omega) \xleftarrow{\text{DTFT}} X(\Omega)$, then

$$X(n-n_0) \xleftarrow{}{}^{\text{DTFT}} e^{-j\Omega n_0} X(\Omega \cdot ($$

where n_0 is an arbitrary integer.

• This is known as the translation (or time-domain shifting) property of the Fourier transform.

<ロ>

 $\mathcal{O}\mathcal{Q}$

$$\Theta^{\Omega_0 n} X(n) \xleftarrow{}{}^{\text{DTFT}} X(\Omega - \Omega \cdot 0)$$

where Ω_0 is an arbitrary real constant.

• This is known as the modulation (or frequency-domain shifting) property of the Fourier transform.

$$X(-n) \leftarrow X(-\Omega.($$

• This is known as the time-reversal property of the Fourier transform.

Version: 2016-01-25

<ロ><部</p>

$$X^*(n) \leftarrow^{\text{DTFT}} X^*(-\Omega.($$

• This is known as the conjugation property of the Fourier transform.

Version: 2016-01-25

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$X(Mn \to \stackrel{\text{DTFT}}{\leftarrow} (\frac{1}{M} \sum_{k=0}^{M-1} X \frac{\Omega - 2\pi k}{M})$$

•

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

590

• This is known as the downsampling property of the Fourier transform.

Version: 2016-01-25

• If $X(\Omega) \xleftarrow{\text{DTFT}} X(\Omega)$, then

$\uparrow) M \rangle x (n) \xleftarrow{} X (M \Omega. ($

• This is known as the upsampling property of the Fourier transform.

Version: 2016-01-25

▲□▶▲□▶▲□▶▲□▶▲□ シ へ ()

• If
$$X_1(\Omega) \xleftarrow{\text{DTFT}} X_1(\Omega)$$
 and $X_2(\Omega) \xleftarrow{\text{DTFT}} X_2(\Omega)$, then
 $X_1 * X_2(\Omega) \xleftarrow{\text{DTFT}} X_1(\Omega) X_2(\Omega)$.

- This is known as the convolution (or time-domain convolution) property of the Fourier transform.
- In other words, a convolution in the time domain becomes a multiplication in the frequency domain.
- This suggests that the Fourier transform can be used to avoid having to deal with convolution operations.

3

 $\mathcal{A} \subset \mathcal{A}$

< ロ > < 同 > < 臣 > < 臣 > -

• If
$$X_1(n) \xleftarrow{\text{DTFT}} X_1(\Omega)$$
 and $X_2(n) \xleftarrow{\text{DTFT}} X_2(\Omega)$, then

$$X_1(n) X_2(n \rightarrow \xleftarrow{\text{DTFT}} (\frac{1}{2\pi} X_1(\theta) X_2(\Omega - \theta) \alpha \theta.$$

- This is known as the multiplication (or time-domain multiplication) property of the Fourier transform.
- Do not forget the factor of $\frac{1}{2\pi}$ in the above formula!
- This property of the Fourier transform is often tedious to apply (in the forward direction) as it turns a multiplication into a convolution.

 $\mathcal{A} \subset \mathcal{A}$

$$n_X(n) \xleftarrow{\text{DTFT}} j \frac{d}{d\Omega} X(\Omega.($$

• This is known as the frequency-domain differentiation property of the Fourier transform.

<ロ>

- If $X(n) \xleftarrow{\text{DTFT}} X(\Omega)$, then $\sum_{k^{\infty}-1}^{n} X(k) \xleftarrow{\text{DTFT}} \frac{\theta^{j\Omega}}{\theta^{j\Omega} 1 - } X(\Omega) + \pi X(0) \sum_{k^{\infty}-1}^{\infty} \delta(\Omega - 2\pi k.)$
- This is known as the accumulation (or time-domain accumulation) property of the Fourier transform.

Version: 2016-01-25

▲□▶▲□▶▲□▶▲□▶ ■ のへで

• If $X(\Omega) \stackrel{\text{DTFT}}{\leftarrow} X(\Omega)$, then

$$\sum_{n=1}^{\infty} |x(n)| = \frac{2}{2\pi} \frac{1}{2\pi} |X(\Omega)|^2 d\Omega$$

)i.e., the energy of X and energy of X are equal up to a factor of 2π).

- This is known as Parseval's relation.
- Since energy is often a quantity of great significance in engineering applications, it is extremely helpful to know that the Fourier transform *preserves energy* (up to a scale factor.(

<ロト < 部 ト < 臣 ト < 臣 ト 三臣

 $\neg \land \land \land$